Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008

REMARKS

In the above-identified Office Action, the Examiner rejected Claims 28 —
31 under 35 U.S.C. §101 as being directed to non-statutory subject matter.
Claims 1 -5, 8 - 20, 23, 24 and 27 - 34 were rejected under 35 U.S.C. §103(a)
as being unpatentable over Gish. Claims 6, 7 21, 22, 25 and 26 were rejected
under 35 U.S.C. §103(a) as being unpatentable over Gish in view of Nakajima.

In response to the 101 rejection of Claims 28 — 31, Claims 28 and 29 have
been amended to include the limitations of a processor processing instructions to
perform the function in the claims. Consequently the claims presently include
hardware as well as software and thus are now within patentable subject matter.

Hence, Applicants kindly request withdrawal of the 101 rejection.

Further, Applicants amended the Specification to include the term
‘readable media.” Since the term “readable media” is in the original Specification
(see original Claim 28) to refer to recordable media on page 7, lines 24 — 27, no
new matter is added to the Application by this amendment.

Independent Claims 1, 12, 28, 29 and 32 have been amended to better
claim the invention. Particularly, the claims are amended to replace a-server with
one of a plurality of servers and a-clienrt-application with one of a plurality of client
applications. Support for the added limitations can be found, among other

locations, on page 9, lines 1 — 3.

In addition to the amendment of the independent claims, Applicants have
amended dependent Claims 2, 3, 5, 6, 8, 10, 12, 19, 20, 30 and 31 to better
claim the invention.

By this amendment, Claims 1 — 34 remain pending in the Application. For
the reasons stated more fully below, Applicants submit that the pending claims
are allowable over the applied references. Hence, reconsideration, allowance
and passage to issue are respectfully requested.

The invention is set forth in claims of varying scopes of which Claim 1 is

illustrative.

CA920020055US1

Page 12 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008

1. A method of executing code in a client-server
environment comprising:

identifying an input object on a client system,
the input object identifying code for executing on one
of a plurality of servers;

processing the input object to identify the code
for executing on the one of the plurality of servers;

generating, in response to identifying the code
for executing on the one of the plurality of servers,
code for accessing the code for executing on the one
of the plurality of servers;

processing the generated code to determine
the one of the plurality of servers on which to
execute the code, each code for executing on a
server being able to execute on a particular server,

enabling the determined server to access the code
for executing on the one of the plurality of servers;

identifying, based on the accessed code for
executing on the one of the plurality of servers, one of a
plurality of client applications for allowing the determined
server to interact with the client system during processing
of the code for executing on the one of the plurality of
servers; and

processing the code for executing on the one of
the plurality of servers. (Emphasis added.)

The Examiner asserted that except for “identifying an input object on a
client system, the input object identifying code for executing on a server,” Gish
teaches the claimed invention in Figs. 4 and 5, col. 17, lines 34 — 52 and col. 8,
lines 1 — 30. But, the Examiner continued, “it is common for a person skilled in
the art to see that Figs. 4 and 5 of Gish, the client communicates with the server,
and helps in executing the application which is stored on the server.” Therefore,
the Examiner concluded, “it would have been obvious to a person skilled in the
art at the time the invention was made to incorporate the use of inputting object
on the client system taught by Gish, which is being transferred to the server to
execute the application and being presented to the client.” Applicants

respectfully disagree.

CA920020055US1

Page 13 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008

Firstly, since as admitted by the Examiner, Gish does not teach
identifying an input object on a client system, the input object identifying
code for executing on a server, Gish then cannot teach, show or suggest
processing the input object to identify the code for executing on the one of

the plurality of servers as asserted by the Examiner.

Secondly and as mentioned in the Response to the Previous Office
Action, Gish purports to teach an enterprise computing manager in which an
application is composed of a client (front end) program which communicates
utilizing a network with a server (back end) program. The client and server
programs are loosely coupled and exchange information using the network. The
client program is composed of a User Interface (Ul) and an object-oriented
framework (Presentation Engine (PE) framework). The Ul exchanges data
messages with the framework. The framework is designed to handle two types
of messages: (1) messages from the Ul, and (2) messages from the server (back
end) program via the network. The framework includes a component, the
mediator which manages messages coming into and going out of the framework.

In col. 18, lines 7 — 30, Gish discloses:

FIG. 5 illustrates how a preferred embodiment leverages Java to
facilitate the establishment and implementation of server-centric
policies. The client and server nodes communicate utilizing the
web technologies in an Internet, Intranet or other network

environment. The client node 500 contacts the server node 520 via

HTTP with a request to execute an application. After

authenticating the client 500, the server node 520 selects front 502

and back end 510 components based on the application definition

list maintained at the server node 520. The server starts its back

end process 510 and sends the front end program 502 to the client

node via the Web technologies in an Internet, Intranet or other

network environment. The client 500 executes the selected front

end 502 locally at the client node 500. The front end (client)
CA920020055U81

Page 14 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008

programs open a TCP/IP connection back to the server to initiate

message passing in order to run the applications. The front end

program 502 is implemented entirely in Java which facilitates
instances of client/server applications which can run concurrently
on a set of multi-platform clients. The server 520 is able to send a
front end program 502 to any client node 500 which has the Java
runtime installed on the computer. Server policies will not involve
the clients. The policies will focus on the server's control of its
local resources. (Emphasis added.)

According to the above-reproduced paragraph, a client sends a request to
a server to execute an application (e.g., the code). The server identifies, based
on the application to be executed, a front end component 502 (e.g., a client
application) and a back end component 510 that will facilitate interaction between
the server and the client during the execution of the application. The front end
component is sent to the client, which executes it to open up a TCP/IP
connection between itself and the server. The server then starts to execute the
application.

Thus, in the client-server environment of Gish, code is not generated in
order to access code for executing on a server. Therefore, Gish does not teach,
show or suggest generating, in response to identifying the code for
executing on the one of the plurality of servers, code for accessing the
code for executing on the one of the plurality of servers as in the claimed
invention.

Further, in the client-server environment of Gish, a server is contacted by
the client system to process the application. But Gish does not so much as
suggest that the server contacted is one among a plurality of servers much less

determining which one of a plurality of servers to contact to process the code.

Therefore, Gish does not teach, show or suggest processing the generated
code to determine the one of the plurality of servers on which to execute

CA920020055US1

Page 15 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008
the code, each code for executing on a server being able to execute on a
particular server as in the claimed invention.

Consequently, Gish does not teach the claimed invention, but for the first
element, as asserted by the Examiner.

Therefore, it would not be a simple matter for one skilled in the art to
incorporate the use of inputting object on a client system described by Gish to
arrive at the claimed invention, especially when the client system of Gish does

not determine one server among a plurality of servers to contact to process

the code as in the claimed invention.

Therefore, Applicants submit that Gish does not teach, show or suggest
independent Claim 1. Consequently Claim 1 and its dependent claims are
allowable over Gish.

The other independent claims (i.e. independent Claims 12, 28, 29 and 32)
and their dependent claims all include in one form or another the limitations of
processing the generated code to determine the one of the plurality of
servers on which to execute the code, each code for executing on a server
being able to execute on a particular server and identifying, based on the
accessed code for executing on the one of the plurality of servers, one of a
plurality of client applications for allowing the determined server to interact
with the client system during processing of the code for executing on the
one of the plurality of servers. Consequently, they too are patentable over
Gish.

Nonetheless, Applicants would like to point out that the dependent claims
are patentable of their own right. For example in rejecting Claim 2, the Examiner
asserted that in col. 19, lines 13 — 19, Gish teaches using a view list of at least

one input element for processing a type of code identified by the input

object. The Examiner further asserted that in col. 27, lines 51 — 55 and in col.
28, lines 20 — 31, Gish teaches processing the generated code includes

using a server list of at least one server element for determining the server.

The Examiner then asserted that in Figs. 4 and 5 and in col. 18, lines 14 — 16,

CA920020055US1

Page 16 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008

Gish teaches identifying the client application includes using a launcher list

of at least one client element for launching the one of the plurality of client

applications. Applicants respectfully disagree.

Again, Applicants would like to point out that since as admitted by the
Examiner, Gish does not teach an input object, then Gish cannot teach using a
view list of at least one input element for processing a type of code
identified by the input object.

Secondly, in col. 19, lines 13 — 19, Gish discloses:

When application execution is initiated, the client node begins to
interpret the PE 700 (FIG. 7) it has received from the server node
710. The PE 700 is a framework (which includes an User Interface
(UI) which can include a graphical Ul (GUI)) and an instance of a
communication library 720 implemented in Java. Once it starts up,
the PE 700 opens a socket connection to the server node 710
utilizing the server port number it was supplied when the server
app manager 650 started the back end process 730.

But note that nowhere in the above-reproduced paragraph is there a
reference to a view list with input elements.

Therefore, Applicants submit that Gish does not teach wherein
processing the input object to identify the code for executing on the one of
the plurality of servers includes using a view list of at least one input
element for processing a type of code identified by the input object as
asserted by the Examiner.

In col. 27, lines 51 — 55, Gish discloses:

ICE-T applications can use a Java-enabled Web browser for client
access to application execution. Although developers may choose
to have applications launched outside a browser, a Web page
presents a familiar and easy to use interface for launching
applications.

Wherein in col. 28, lines 20 — 31, Gish discloses:

CA920020055US1

Page 17 of 20



Appl. No. 10/718,297

Response dated 08/18/2008

Reply to Office Action of 05/16/2008
When a user launches an ICE-T application, the client node
establishes a Web connection with the server node using HTTP.
The server manages this Web connection. ICE-T applications can
be launched from a browser, an applet viewer, or as standalone
applications. FIG. 26 illustrates the steps associated with launching
an application URL in accordance with a preferred embodiment.
On the server side, the ICE-T Access Layer (a cgi-bin executable)
authenticates the user data. If the authentication succeeds, the
Access Layer contacts the ICET Application Manager and the
Application Manager starts the server program and initiates a
network session.

In the paragraphs above, Gish discloses that an application can be
launched inside or outside of a browser and when a client launches an
application, a Web connection is established between the client and a server.

But nowhere in those paragraphs is there a teaching, showing or
suggestion of using a server list that has at least one element to determine a
server on which to process code.

Thus, Applicants submit that Gish does not teach, show or suggest

processing the generated code includes using a server list of at least one

server element for determining the server as asserted by the Examiner.

Finally, Figs. 4 and 5 are explained in col. 17, line 34 to col. 18, line 38. In
the passages in col. 17, line 34 to col. 18, line 38, Gish discloses in general that
a client sends a request to a server to execute an application. The server
identifies, based on the application to be executed, a front end component and a
back end component that will facilitate interaction between the server and the
client during the execution of the application. The front end component is sent to
the client, which executes it to open up a TCP/IP connection between itself and
the server. The server then starts to execute the application. The server then

starts to execute the application.

CA920020055US1

Page 18 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008
However, Gish does not teach a launcher list of at least one client element
for launching client applications.
Therefore Gish does not teach, show or suggest identifying the client

application includes using a launcher list of at least one client element for

launching the one of the plurality of client applications as asserted by the

Examiner.

Since none of the elements of Claim 2 are taught by Gish, incorporating
the input object in the client-server system of Gish, as asserted by the Examiner,
would not teach, show or suggest the invention as claimed in Claim 2.

Regarding Claims 3, 5, 14, 16 and 18, they all contain the limitations of

one or all of a view list, a server list and a launcher list as being extensible. For

example, Claim 3 includes the limitations “wherein at least one of the view list,
server list and launcher list is extensible to accommodate additional respective
elements.”

The Examiner, in rejecting Claim 3, asserted that Gish teaches the
limitations therein in col. 18, lines 14 — 16 and in col. 28, lines 20 — 26.
Applicants respectfully disagree.

In col. 18, lines 13 — 16, Gish discloses:

After authenticating the client 500, the server node 520 selects
front 502 and back end 510 components based on the application
definition list maintained at the server node 520.
And in col. 28, lines 20 — 26, Gish discloses:
When a user launches an ICE-T application, the client node
establishes a Web connection with the server node using HTTP.
The server manages this Web connection. ICE-T applications can
be launched from a browser, an applet viewer, or as standalone
applications. FIG. 26 illustrates the steps associated with launching

an application URL in accordance with a preferred embodiment.

CA920020055US1

Page 19 of 20



Appl. No. 10/718,297
Response dated 08/18/2008
Reply to Office Action of 05/16/2008
In the above-reproduced two passages Gish does not disclose a view list,
a server list or a launcher list, much less having a view list, a server list and a
launcher list that is extensible to accommodate additional respective elements.
Thus, Applicants submit that Claim 3 is patentable over Gish.
Since Claims 5, 14, 16 and 18 each contain one of a view list, a server list

and a launcher list as being extensible, they too are patentable over Gish.

In short, Applicants submit that the claims are patentable over the cited
references and hence, once more respectfully request reconsideration,

allowance and passage to issue of the claims in the Application.

Respectfidty

torney for Applicants
5

Registration Na. 39,569
(512) 3063969

CA920020055US1

Page 20 of 20



	2008-08-18 Applicant Arguments/Remarks Made in an Amendment

